REPRODUCTION AND TRYPANOSOMA CONGOLENSE IN NIGERIAN WEST AFRICAN DWARF EWES: II. GENITAL AND ENDOCRINE LESIONS

Abubakar YU¹, Oyedipe EO, ¹, ² Eduvie LO ¹, ³ Ogwu DO ⁴, Adeyeye AA ⁵

1. National Animal Production Research Institute, Shika, Ahmadu Bello University, Zaria-Nigeria.
2. Department of Theriogenology and Production, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria.
3. Department of Animal Production, Delta State University, Abraka, Delta State.
4. Department of Theriogenology and Production, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria-Nigeria.
5. Department of Theriogenology and Animal Production, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria.

Corresponding author: Adeyeye AA
Email: adewale.adeyeye@udusok.edu.ng

Abstract
Aim: The study was designed to determine the effect of Trypanosoma congolense on the genital and endocrine organs of West African Dwarf (WAD) ewes.

Methods: Ten WAD ewes obtained for the study were divided into two groups comprising 5 ewes each. Group A was infected with Trypanosoma congolense, while group B was uninfected and allowed to run for eight weeks. At the end of the study period, three infected and two control ewes were sacrificed. The weights of the ovaries were determined and sections taken for histopathological examination. Sample sections from other parts of the reproductive tract, brain, pituitary gland, and hypothalamus were also taken.

Results: The mean ovarian weight, number of follicles and number of corpora lutea of the infected ewes decreased compared to the control ewes but were not statistically significant (p > 0.05). No parasites were seen following impression smears conducted on the ovaries. However, there were slight areas of necrosis and mild degeneration of the ovarian stroma. These were absent in the control ewes. No detectable gross lesions were seen in the adenohypophysis of both the infected and control ewe, although slight areas of focal necrosis were seen at histology. There were no detectable gross and histological lesions in the uterus, cervix, vagina, brain and hypothalamus of both infected and control ewes.

Conclusion: The findings from this study are of great importance for the economic exploitation of WAD sheep in tsetse infected area.

Keywords: Adenohypophysis, Ovaries, Trypanosoma congolense, WAD Ewe.

INTRODUCTION
Trypanosoma congolense is a haemoparasite affecting cattle, pigs, goats, sheep, horses, and dogs (OIE, 2013). It is a pathogenic parasite with two known strains, one from West Africa and the other from East Africa. However, the West African strain is more pathogenic (Osaer et al., 1994). T. congolense is transmitted biologically (Mbaya et al., 2012), although mechanical and congenital transmissions have been reported (Griffin, 1983; Desquesnes & Dia, 2003). Pregnant animals infected with T. congolense may abort or give birth to weak neonates (Faye et al., 2004). There is anorexia, anaemia, lacrimation, weight loss, weakness and death of the dam in some instances (Llewelyn et al., 1987). In non-pregnant females, there is anestrus (Llewelyn et al., 1988) and genital lesions (Ogwu and Njoku, 1991). Infected males show pathological changes characterized by testicular degeneration, penile protrusion, haemorrhage, preputial inflammation, decrease testosterone levels, increase cortisol concentration and depressed pituitary and adrenocortical functions (Adeyemo et al., 1990; Sekoni et al. 1990; Raheem et al., 2009; Victor et al. 2012; Okubanjo et al. 2014; Okubanjo et al. 2015). The pathogenesis of trypanosomosis-induced reproductive losses has been the subject of numerous researches (Ogwu et al., 1986; Edeghere et al., 1992; Faye et al., 2004; Leigh and Fayemi, 2013; Silver et al., 2013; Allam et al., 2014;
Adeyeye et al., 2016a), with a few reviews available on the disease (Ikede et al., 1988; Sekoni, 1994; Raheem, 2014). The mechanism responsible for these losses is not widely known. However, Bawa (2000) suggested fetal hypoxia and stress, pyrexia, anemia and direct invasion of body tissues as possible mechanisms. The attack on the body tissues is characterized by pathological changes. T. congoense mainly resides in plasma (Seifert, 1996) and is believed to cause injury by anemia without major histological changes on the tissue (Ike and Loses, 1972). However, Ogwu and Njoku (1991) reported histopathological changes in T. congoense infected heifers. To the best of our knowledge, no study has been designed to ascertain this position in West African Dwarf ewe which is a trypanotolerant breed (Geerts et al., 2009). This study was carried out to determine the gross and histopathological changes associated with T. congoense infection in the genital and endocrine organs of WAD ewes.

MATERIALS AND METHODS
Experimental animals
Ten matured non-pregnant but cycling West African Dwarf (WAD) ewes obtained from the Small Ruminant Research Program, National Animal Production Research Institute, Shika-Zaria, Nigeria. They were selected from the sheep stock of the institute, and were initially used to study the effect of Trypanosoma congoense on the oestrous cycle of WAD, their management has therefore been described in Abubakar et al. (2015).

Study design
They were divided into two groups comprising 5 ewes each. Group A was infected with Trypanosoma congoense while group B was uninfected, and the study ran for eight weeks. The parasite used was obtained from the Department of Veterinary Parasitology and Entomology, Ahmadu Bello University Zaria, Nigeria.

Pathological examination
At the end of the study period, three infected and two control ewes were humanly euthanized and necropsied. The necropsy was carried out to examine for gross lesions on the reproductive tract and the endocrine glands. The weights of the ovaries were determined and sections taken for histopathological examination. Sample sections from other parts of the reproductive tract, brain, pituitary gland, and hypothalamus were also taken. All these were fixed in Bouin’s solution and used for histopathological evaluation.

RESULTS
The infected ewes had a pre-patent period of 10.2 ± 1.2 days. Other clinical signs were undulating parasitemia, intermittent pyrexia, anemia and emaciation. The mean ovarian weight, number of follicles and number of corpora lutea of the infected ewes is presented in Table 1. These parameters decreased compared to the control ewes but were not statistically significant (p > 0.05). Petechial haemorrhage was observed on the left ovary of one of the infected ewe. No parasites were seen following impression smears conducted on the ovaries. However, they had slight areas of necrosis and mild degeneration of the ovarian stroma. These were absent in the infected ewes. No detectable gross lesions were seen in the adenohypophysis of both infected and control ewe (Figure 1), although some slight areas of focal necrosis were seen histologically in the infected ewes (Figure 2). There were no detectable gross and histological lesions in the uterus, cervix, vagina, brain and hypothalamus of both infected and control ewes.

DISCUSSION
The ovarian weights of the infected ewes decreased but were not substantially different from the uninfected ewes. Similarly, the number of follicles and corpora lutea of the infected ewes did not differ from ewes in the control. Our observation contradicts the report of Isoun and Anosa (1974) as well as Adenowo et al. (2005) in T. vivax infected ewes, where substantial decreases were observed. Likewise, ovarian atrophy, reduction in number of follicles and corpora lutea has also been reported in T. congoense infected goats (Mutayoba et al., 1988) and heifers (Ogwu and Njoku, 1991), as well as in

Table 1: Mean±SEM ovarian weight, number of follicles and number of corpora lutea in Trypanosoma congoense infected WAD ewes

<table>
<thead>
<tr>
<th></th>
<th>Mean ovarian weight</th>
<th>Mean number of follicles</th>
<th>Mean number of corpora lutea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infected ewes</td>
<td>1.33 ± 0.06</td>
<td>2.00 ± 0.29</td>
<td>1.50 ± 0.09</td>
</tr>
<tr>
<td>Control ewes</td>
<td>1.45 ± 0.05</td>
<td>3.25 ± 0.43</td>
<td>1.75 ± 0.31</td>
</tr>
</tbody>
</table>
T. vivax infected goats (Rodrigues et al., 2013) and cattle (Ige and Amodu, 1975). The contradictions may be attributed to the trypanotolerant nature of WAD ewes. There was petechial haemorrhage on the left ovary of one of the infected ewe. Since this was not generalized nor found in other infected ewes, it may not be attributed to *T. congolense* infection in this study. Slight areas of necrosis and mild degeneration of the ovarian stroma were observed histologically on the ovaries of the infected ewes. In other trypanosomosis susceptible animals, lesions ranging from fibrosis and degeneration of ovarian stroma and follicular cyst with atretic follicles have been reported (Mutayoba et al., 1988; Ogwu and Njoku, 1991; Adenowo et al., 2005), probably due to the breed variation suggested earlier. In the adenohypophysis, no gross lesions were seen among the infected ewes, although slight areas of focal necrosis were observed at histology. In *T. vivax* infected Yankasa ewes, Adenowo et al. (2005) reported mononuclear cell infiltration in the capsules and the parenchyma along with necrosis of the parenchyma cells of the adenohypophysis. These changes were observed in *T. evansi* infected ewes (Adeyeye, 2016b) as well as in goats infected with *T. congolense* (Mutayoba et al., 1988) and *T. brucei* (Leigh et al., 2015). Lesions on the adenohypophysis will lead to impairment in the release of gonadotropin-releasing hormone (GnRH) which is responsible for stimulating the production of follicular stimulating hormone (FSH) and luteinizing hormone (LH). This leads to impaired estrus cycle which was observed in our earlier report (Abubakar et al., 2015). The uterus, cervix, vagina, brain and hypothalamus had no detectable gross or histological changes. This is similar to the reports of (Adeyeye et al, 2016b) in *T. evansi* infected ewes, except for the hypothalamus which they reported had neuronal degeneration and infiltrated by microglial cells. Our observations disagree with Adenowo et al. (2005), who reported lesions in the hypothalamus of *T. vivax* infected ewes. Leigh et al. (2015) also reported pathological lesions in the uterus and hypothalamus of WAD does infected with *T. brucei*. The variation in sheep breeds maybe responsible for this difference with Adenowo et al. (2005). Although WAD goats are also trypanotolerant, sheep have been observed to be more trypanotolerant than goats (Boid et al., 1981). This probably explains our variation with Leigh et al. (2015). In conclusion, infection of WAD ewes with *T. congolense* showed no marked genital and endocrine lesions, in contrast with observations made in previous studies using other sheep breeds and *trypanosoma* species. It is therefore suggested that WAD ewes are capable of controlling the pathological effect of *T. congolense*. The phenomenon of trypanotolerance in WAD sheep might have contributed to the relatively mild pathological lesion on the genital and endocrine organs. This finding is of great importance for the economic exploitation of this breed of sheep in setse infected area.

REFERENCES


Adeyemo O, Oyejide A, Agbedana O (1990). Plasma testosterone in *Trypanosoma congolense* and


Raheem KA (2014). A review of trypanosomosis-induced reproductive dysfunctions in male animals. Agrosearch, 14: 30-38


